27 research outputs found

    Analogue Special and General Relativity by Optical Multilayer Thin Films: The Rindler Space Case

    Full text link
    In this paper, to obtain an analogy between the curved spaces and the linear optics, we expand the idea of Ref.[1, 2] to the multilayer films. We investigate efects of thickness and index of refraction of the films on the Lorentzian transformations. In addition, by using the multilayer films, we suggest very simple experimental set-up which can serve as an analogue computer for testing special relativity. Finally, we draw an analogy between the Rindler space, as an example of the curved spaces, and a suitable multilayer film.Comment: 5 Figure

    Multislice CT angiography in the selection of patients with ruptured intracranial aneurysms suitable for clipping or coiling

    Get PDF
    Introduction We sought to establish whether CT angiography (CTA) can be applied to the planning and performance of clipping or coiling in ruptured intracranial aneurysms without recourse to intraarterial digital subtraction angiography (IA-DSA). Methods Over the period April 2003 to January 2006 in all patients presenting with a subarachnoid haemorrhage CTA was performed primarily. If CTA demonstrated an aneurysm, coiling or clipping was undertaken. IA-DSA was limited to patients with negative or inconclusive CTA findings. We compared CTA images with findings at surgery or coiling in patients with positive CTA findings and in patients with negative and inconclusive findings in whom IA-DSA had been performed. Results In this study, 224 consecutive patients (mean age 52.7 years, 135 women) were included. In 133 patients (59%) CTA demonstrated an aneurysm, and CTA was followed directly by neurosurgical (n=55) or endovascular treatment (n=78). In 31 patients (14%) CTA findings were categorized as inconclusive, and in 60 (27%) CTA findings were negative. One patient received surgical treatment on the basis of false-positive CTA findings. In 17 patients in whom CTA findings were inconclusive, IA-DSA provided further diagnostic information required for correct patient selection for any therapy. Five ruptured aneurysms in patients with a nonperimesencephalic SAH were negative on CTA, and four of these were also false-negative on IA-DSA. On a patient basis the positive predictive value, negative predictive value, sensitivity, specificity and accuracy of CTA for symptomatic aneurysms were 99%, 90%, 96%, 98% and 96%, respectively. Conclusion CTA should be used as the first diagnostic modality in the selection of patients for surgical or endovascular treatment of ruptured intracranial aneurysms. If CTA renders inconclusive results, IA-DSA should be performed. With negative CTA results the complementary value of IA-DSA is marginal. IA-DSA is not needed in patients with negative CTA and classic perimesencephalic SAH. Repeat IA-DSA or CTA should still be performed in patients with a nonperimesencephalic SAH

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/
    corecore